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Abstract

We describe a measurement of the charge asymmetry of leptons from W
boson decays in the rapidity range 0 < |y;| < 2.5 using W— ev, uv events
from 11047 pb~! of data collected by the CDF detector during 1992-95. The



asymmetry data constrain the ratio of d and v quark momentum distributions
in the proton over the x range of 0.006 to 0.34 at Q? ~ MI%V The asymmetry
predictions that use parton distribution functions obtained from previously
published CDF data in the central rapidity region (0.0 < |y| < 1.1) do not
agree with the new data in the large rapidity region (|y;| > 1.1).

PACS numbers: 13.85.Qk, 13.38.Be, 14.70.Fm
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At Tevatron energies, W+ (W~) bosons are produced in pp collisions primarily by the
annihilation of u (d) quarks in the proton and d (@) quarks from the antiproton. Because u
quarks carry on average more momentum than d quarks [1-3], the W™ bosons tend to follow
the direction of the incoming proton and the W™ bosons that of the antiproton. The charge
asymmetry in the production of W bosons is related to the u and d quark distributions at
Q* ~ M}, and is roughly proportional [4,5] to the ratio of the difference to the sum of the

quantities ¢(z;) and £(z,), where z, and x, are the fractions of the nucleon’s momentum

carried by the quarks in the p and p, respectively. %(x) is the ratio of the d to u quark
parton distribution functions for quarks carrying a momentum fraction, z, of the nucleon’s
momentum.

W asymmetry measurements [6] from 20 pb~" of data collected by the Collider Detector
at Fermilab (CDF) in 1992-93 demonstrated the measurement to be more sensitive than deep
inelastic scattering experiments to the % ratio within the x range accessible by the W data at
the Tevatron. These data contribute to global analyses used to extract parton distribution
functions (PDFs) in the nucleon [1-3]. These functions are used in the calculation of all
hadronic cross sections. CDF’s previous asymmetry data [6] improved the understanding of
the v and d quark momentum distributions in the proton in the x range 0.007 < x < 0.24.
The use of these data resulted in a reduction in the uncertainty from PDFs in the W mass
measurement [7] from = 75 to ~ 50 MeV /c2. A further reduction of this error to ~ 20 MeV /c?
is possible [8] using the new data presented here. Recently fixed target Drell-Yan data [9]
has also been used to constrain the (u — d) sea quark distribution.

In this letter, we describe the asymmetry results at /s = 1.8 TeV using data from the
entire 1992-95 period, using a total integrated luminosity of 110+ 7 pb™! — a 5-fold increase
relative to the 1992-93 data. The new measurements agree with and supersede the previous
results. The asymmetry measurement is extended to larger rapidity [10] (|y;| < 2.4) by the
introduction of a new charge determination technique [11] for electrons, and also by using
data from the forward muon detector (1.9 < |y;| < 2.5). These electron and muon data at
large rapidity provide information about PDF's for a larger x range (0.006 < x < 0.34) than
previously available. The mean x values of the d and u parton distributions probed by the
CDF asymmetry data are shown in Table 1.

Since the W rapidity is experimentally undetermined because of the unknown longitudi-
nal momentum of the neutrino from the W decay, we measure the lepton charge asymmetry
which is a convolution of the W production charge asymmetry and the V' — A asymmetry
from the W decay. The two asymmetries tend to cancel at large values (|y;| 2 2) of rapidity.
However, if one assumes W decays proceed via a pure V — A interaction, the lepton asym-
metry is still sensitive to the parton distribution functions. The lepton charge asymmetry
is defined as:

d0'+/dyl — dO’i/dyl
Alw) = dot/dy, + do=/dy,’ @

where do™ (do™) is the cross section for W+t (W~) decay leptons as a function of lepton
rapidity, with positive rapidity being defined in the proton beam direction. If the detection
efficiencies and acceptances for [ and [~ are equal, then the uncertainties on these quantities
do not affect A(y,).



The tracking detectors at CDF [12] are the Vertex Time Projection Chambers (VTX), the
Central Tracking Chamber (CTC, || < 1.8), the Silicon Vertex Detector (SVX, |n| < 2.3),
the Central Muon Chambers (CMU and CMX, |n| < 1.0), and the Forward Muon Detector
(FMU, 1.9 < |n| < 3.5). The VTX provides r-z tracking information out to a radius of 22
cm for |n| < 3.25 and is used to measure the z location [10] of the primary interaction vertex.
The CTC is an 84 layer drift chamber inside the 1.4 T solenoidal magnet which provides the
curvature measurement of electrons and muons from W decays. The CTC has a momentum
resolution of 6(1/py) = 0.00081 (GeV/c)™' [7]. The SVX is a 51 cm long, 4 layer precision
vertex detector with a track position resolution [11] of &~ 10 pum. Because pp interactions at
CDF are spread along the beamline with an RMS of &~ 30 c¢m, the geometrical acceptance
of the SVX is about 60% for W candidate events. In this analysis, the SVX complements
the CTC for electron tracking at high |n| (1.2 < |n| < 2.3). The FMU consists of two steel
magnets (toroids) alternately inserted between 3 drift chambers.

W decays to leptons are identified by a charged track pointing either at hits in the muon
chambers or a cluster of energy in the electromagnetic calorimeters (EM) accompanied by
large missing transverse energy (K7) [10]. Electron candidates are required to fall within the
fiducial regions of either the central (|y;| < 1.1) or the plug (1.1 < |y;| < 2.4) EM calorimeters
and to pass identification cuts based on the EM shower’s profile determined with test beam
electrons. Muon candidates are required to have a track in the muon tracking system and
a minimum ionizing particle signal in the hadronic and EM calorimeters. The transverse
energy (Er) of the lepton and Fr are required to be greater than 25 GeV. To further reduce
the background from dijet events where one jet is incorrectly reconstructed as a charged
lepton and where a large Fp results from shower fluctuations or uninstrumented regions in
the detector, events with a jet [13] with EX' > 30 GeV are rejected.

The data are divided into five samples: central electrons (|y,| < 1.1), central muons
(lyil < 1.0), plug electrons within the SVX fiducial region (plug-SVX, 1.1 < |y| < 2.4),
plug electrons outside the SVX geometrical acceptance region but with a CTC track (plug-
CTC, 1.1 < |y| < 1.8), and forward muons (1.9 < |y| < 2.5). In total 88047 events are
selected. A reliable charge determination and a good energy measurement are essential for
this analysis. Central electrons, central muons, and plug electrons outside the SVX are
required to have an associated CTC track. A reliable charge determination is ensured by a
CTC track curvature (C') significance requirement of C'/§C > 2 (where 0C'is the error in the
curvature measurement). The charge of forward muons is measured well in the FMU toroidal
magnets. The energy of plug electrons is measured by the EM calorimeters, and the 1 and
¢ are measured by the tower segmentation [10]. However, tracking information is needed
in order to determine the charge. The geometrical acceptance of the plug calorimeters is
only partially covered by the CTC. Therefore, the efficiency for finding a CTC track, and
hence determining the charge, drops quickly as a function of rapidity and becomes zero for
|yl| > 1.8.

A new charge determination technique [11] is introduced to identify the charge of plug
electrons within the SVX geometrical fiducial region. At CDF, positively (negatively)
charged particle trajectories are bent in increasing (decreasing) ¢ inside the solenoidal mag-
netic field. The SVX track stub measures precisely the initial track direction in ¢. The
plug EM calorimeter (PEM) [14] shower centroid measurement combined with the location
of the vertex position yields another measurement of ¢, and the sign of the difference of
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the two ¢ measurements determines the charge. The shower centroid is measured with a
strip position detector placed at shower maximum in the pseudo-rapidity region between
1.2 — 1.8. In the pseudo-rapidity region between 1.8 — 2.4, where there is no strip detector
coverage, the centroid is measured from the calorimeter tower information in n and ¢. We
define the ratio R = 6¢mea.sured/ ‘5¢)expec‘ced ) where 6¢mea.sured = d)PEM - ¢SVX7 and 5¢)expec‘ced
is calculated from the calorimeter energy, the radial location of the electron shower and the
magnetic field strength. R peaks at +1 and —1 for positrons and electrons, respectively.
The measurement error on R is 0.3, 0.5 and 0.8 for |y;| bins centered at 1.3, 1.8 and 2.2,
respectively. This technique effectively doubles the number of plug electrons that can be
used in the measurement and extends the charge measurement to |y,| = 2.4.

A possible charge or Ep dependence of each trigger is investigated by using data from
several independent triggers. No evidence of charge dependence is found in the electron and
central muon data samples. The forward muon data taken with the toroid polarities set to
focus p™ and p~, respectively, are averaged to cancel out effects of any charge bias in the
trigger from geometrical acceptance and alignment errors. The efficiency of the plug electron
triggers does not depend on charge, but is not 100% at E; of 25 GeV. At Ep = 25 GeV
the average trigger efficiency for the plug-SVX sample is 78%. A correction is applied to
the measured asymmetry in each rapidity bin, using a Monte Carlo calculation and the
measured trigger efficiency as a function of Er and y;. The correction to A(y;) is found to
be less than 0.005 compared with a typical statistical error of 0.015 in the PEM region.

Sources of charge bias in the event selection are investigated by selecting high E leptons
from either a sample of Z or W events, which satisfy tight kinematic constraints. No charge-
dependent bias in acceptance or efficiencies has been found. The charge misidentification
rate for muons is negligible. The electron charge misidentification rate (e.g. due to multiple
tracks from conversion of Bremsstrahlung photons) in the central region is determined from
the rate of same sign central-central Z electrons. In the plug region, the rates are determined
from W electron data using the number of events outside the two peaks in the R distribution.
This is checked against the same sign central-plug Z electrons as a function of rapidity. The
electron charge misidentification rate ranges from 0.2% in the central data sample to 10% in
the largest rapidity bin (|y;| = 2.20) of the plug electron data. The charge misidentification
rate in the FMU sample is < 1%. The effect of the charge misidentification acts to dilute
the charge asymmetry and is corrected on a bin by bin basis.

All backgrounds have been investigated and found to be small (see Table II). The
average W — 7v background is 2.0 + 0.2% where the error accounts for the small rapidity
dependence. In the plug electron sample, the background from misidentified dijet events is
the largest. This background is charge-symmetric and dilutes the asymmetry. In the central
electron sample, the background from W — tv — evvv is the largest. For the central
muon sample the largest background is misidentified Z — utu~ where one of the muons is
outside the acceptance of the CTC. In the latter two cases, the backgrounds are not charge-
symmetric and the corrections are made using the asymmetry estimated by Monte Carlo
calculations. The background from misidentified Z decays to electrons is negligible because
the EM calorimeters have a much larger geometric acceptance than the muon chambers
or the CTC. In the forward muon sample the background from Z events is 6.5% and the
charge-symmetric background totals 8% of which half is from dijets and half from lower py
muons which are misreconstructed because of random extra hit background in the forward
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drift chambers. The Z — 77~ contamination is negligible. The background from cosmic
rays in the muon sample is < 0.2%. The A(y;) values are corrected for the backgrounds on
a bin by bin basis.

By CP invariance the asymmetry at positive y, is equal in magnitude and opposite in
sign to that at negative y; allowing the two measurements to be combined. Figure 1 shows
the fully corrected asymmetry after taking the weighted mean of the various data sets and
combining the positive and negative y; bins. The asymmetry and uncertainties are listed in
Table III. Figure 1 shows the predictions of Quantum Chromodynamics (QCD) calculated
to Next-to-Leading-Order using the program DYRAD [15] with several parameterizations of
parton distribution functions as input. The MRS-R2 [16] and CTEQ-3M [2] PDFs have
been extracted with the inclusion of the 1992-93 asymmetry data in their global fits (the
1992-93 data constitutes 20% of the sample reported here). As shown in Figure 1, the
predictions using these PDF's are in good agreement with the present data in the central
region (|y;| < 1.1), with x? per degree of freedom (d.o.f) values in the range 0.7-1.3. However,
at high rapidity, these predictions are generally higher than the data, with x*/d.o.f values in
the range 5-10, indicating that the PDF parameterizations should be modified in the range
0.006 < = < 0.34 (see Table I). A recent re-analysis [17] of NMC muon scattering data [18]
on hydrogen and deuterium with improved corrections for nuclear binding effects in the
deuteron has shown the need for a correction to the ¢ ratio of the form : §(£) = 0.1(z +2?).
The prediction using the corrected MRS-R2 PDF is shown in Figure 1 and shows reasonable
agreement with the measured asymmetry at high |y;|. Recent global parton distribution
fits [19] (e.g. MRST) that have incorporated the data presented in this paper also lead to
agreement at high |y;|. The theoretical uncertainties arising from the effect of the finite
charm quark mass [20] are much smaller than the measurement errors.

The W decay lepton charge asymmetry is mostly sensitive to the % ratio. However, at
large rapidity it is also affected by the W production pr spectrum. The DYRAD calculation
does not reproduce the production py spectrum of W events at low pr. Therefore, it is
necessary to check how well the DYRAD calculation compares to one more suitable for the
low W pr region. The DYRAD prediction is compared to a calculation including soft gluon
resummation at all orders in perturbation theory implemented in the program REBOS [21].
Both programs yield identical results for the W rapidity distribution, but different results
for the W pr distribution. At Tevatron energies soft gluon radiation is mainly responsible
for the pr of W and Z bosons in the range of p;r < 30 GeV/c, and REBOS can reproduce
the pr spectrum of Z bosons [22]. Figure 1 shows the comparison between the asymmetry
predictions of the DYRAD and REBOS programs using CTEQ-3M [2] PDFs. The two calcu-
lations agree very well in the central region (|y;| < 1.1), which is the region used in the W
mass determination [7]. The difference between the two calculations is mainly at |y;| > 1.7,
as illustrated in Figure 1.

In summary, the asymmetry data demonstrate the value of collider data in the measure-
ment of parton distribution functions and place the strongest constraint on the % ratio of
quark momentum distributions in the proton over the range x of 0.006 to 0.34 at Q* ~ M3-.
The data indicate the need for modifications in the % ratio in the PDF's constrained by the
previous CDF asymmetry data.
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TABLES

TABLE I. The mean z values of the d and u parton distributions probed by the CDF asymmetry
data for the W boson as a function of the lepton rapidity. The % ratios from the CTEQ-3M
parameterization are shown for these z values. The mean z values for the W™ at positive y; are the
same as those for the W at the same negative y;.

(1) (Tu) (za) 4 (za) o (2a)
—2.20 0.009 0.219 0.911 0.412
—1.54 0.016 0.129 0.864 0.542
—1.10 0.021 0.088 0.837 0.625
-0.49 0.038 0.051 0.765 0.722
0.00 0.044 0.044 0.744 0.744
0.49 0.099 0.021 0.601 0.837
1.10 0.165 0.012 0.483 0.889
1.54 0.225 0.009 0.405 0.911
2.20 0.335 0.006 0.306 0.936

TABLE II. Backgrounds (%) in the W — ev and W — uv charge asymmetry event samples.

Sample QCD dijets Z —ete” or ptu~
Central e 0.74+0.2 < 0.2
Central p 0.6 +0.2 4.7+0.7

Plug-SVX e 1.6 £0.3 < 0.2
Plug-CTC e 2.4+0.6 < 0.2
Forward p 442 6.5+ 0.6
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TABLE III. The charge asymmetries (after all corrections) and statistical and systematic un-
certainties in the combined e and p channels.

<|yl|> A(yl) Osys Ostat+sys
0.11 0.017 40.000 +0.008
0.30 0.050 40.000 +0.007
0.50 0.097 40.000 +0.007
0.70 0.132 40.001 +0.008
0.89 0.138 40.001 +0.009
1.05 0.163 +0.002 +0.016
1.31 0.122 40.002 +0.013
1.54 0.121 40.003 +0.012
1.79 0.075 40.005 +0.023
1.95 0.025 4+0.010 +0.029
2.20 —0.095 4+0.015 +0.023
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FIG. 1. The fully corrected charge asymmetry. Data from all the detectors for positive and
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negative y; are combined. The statistical and systematic errors are added in quadrature.
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